
RD-Ai21 9i8 IMPLEMENTATION OF THE VGM GRAPHICS SYSTEM ON THE
PDP-ii/58 UNDER THE RSX-..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA P N COMN JUN 82

UNCLASSIFIED F/G 9/2 NL

Emhhhhh0hhhiEEhhhhhhhhhhhhE
IIIIIIIIIIIIIIl....
EIIIIIhhlllllI
El///ll//Ihl//E
IIIIIfllf IIIIlfl IfllIl
IIIIIm

I IlIII : ,2.0

1111-25 . 4 -6I 2.
m

MICROCOPY RESOLUTION TEST CHART
*AT*INL, &bAhU OF STLAO-, $s9- A

._

• . . - , o , • .• , . ,-

00
- NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
Implementation of the VGM Graphics System
on the PDP-11/50 Under the RSX-11M Operating
System and Construction of a Compatible
Software Driver for the Ramtek RM-9400

by

Patrick Michael Comi T

June, 1982 ~'3

Thesis Advisor: G. A. Rahe

3Approved for public release, distribution unlimited

82 11 30 070,

SWECuETY CLASSIFICATION OP TOSS P4G M a.. Sa.0 _

IN

EEPOR DOMENT~ ATION PAGE R EAD INSTUCIONS

4. TITLE (400 IuSoft*) -- S. Type OF REPORiT a PERSO COVCEO

Implementation of the VGM Graphics System Master's Thesis
9n the PDP-11/.SQ Under the RS -lIM Operat June, 1982
ing System ana Construction oH a Com atibo l. o o RePoRT HUNGER
Software Driver for the Ramtex RM-94a0

U. CONTRACT OR GRANT N.muERwae
'* APTa!'ck Michael Comi

9. PemPOMMIN OROANI&ATIO NAMI AND A00RESS IQ. PROGRAM CLEMENT. PROJECT. TASK

AREA a WORK UNiT muN9ERS

Naval Postgraduate School
Monterey, California 93940

II. CONTROLLING OPPICE NAME ANG AOORM I. REPORT OATI

Naval Postgraduate School June, 1982

Monterey, California 93940 is. 8u7eg OF PAGS

14. MOITORING -AGENCY MAWE & A00O NSIV h-~. C-olg OMmeaa 'a'jI SeCURITY CLAS. (f IM* erftn

UNCLASSI FIED

lie. OASSIP0tICATION/ONGOIHOIN

I. OISTRIOUTION STATEMENT (Of OI X1WN)

Approved for public release, distribution unlimited

I. OISTRIBUTION STATEMERlT (of dhe 6I0004 m md 00 U 0, . nf kN R~'I)

Is. SUPPLMIENTARY MOveS

IS. KEY g0-0" (CAR.h-w an vever t " a of A- .m mi wa W- IP -W Ma -;j

Computer graphics, CORE graphics system, graphics standardization,
graphics program portability, Virtual Graphics Machine

r 11* It 0 a--ooom End No* a_-- n -n

2nA 9 teACM Special Interest Group for Graphics (SIGGRAPH)
formed the Graphics Standards Planning Committee (,SPC) to develop
a standard for the industry. The result of their efforts was the
CORE graphics system. This study discusses that system and the
issues involved in its creation. It describes Bell Northern Re-
search's airoach to implementing CORE with their Virtual Graphicsseachne pocht "g..

T inet lion of VGM at the Naval Postgraduate School on a PDP

11150 with the RSX-11M operating system is described as well as thI ntial e orts to PxDnn it torv h Rm T -4)G~h

DO , 1473 CeIION OP INOV Of, ONOM68TR
vN OIOI4* I I quo

.. U? tSYGO TN i imae~

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Implementation of tne YGM Graphics System on the PDP 11/50
Under the RSI-11M Operating System and Construction of a

Compatible Software Driver for the RamteX RM-940

by

Patrick M. Comi
Lieutenant, United States Navy

1.5., Union College, 1970

Submitted In partial fulfillment of the
requirements for the degree of

P115TI 0F SCIENCE IN COMPUTER SCIENCE

from the

NAVAL.POSTGRADUATE SCHOOL
June 1982

-* Author:

Approved by:,-fsiAdso

Second Reader

Cdhairman, Dept Computer Science

* Dean of Information and Policy Sciences

2

ABSTRACT

2 In 1977 the &CM Special Interest Group for Graphics

(SIISRAPH) formed the Graphics Standards Planning Committee

(;SPC) to develop a standard for the Industry. The result of

tneir efforts was the CORE graphics system. This study

discusses that system and the Issues involved In its

creation. It describes Bell Northern Researcn's approach to

implementing CORE vith their Virtual Graphics Machine (VGM).

The Installation of VGM at the Naval Postgraduate

School on a PDP 11/S vith the RSX-11M operating system is

described as veil as the Initial efforts to expand It to

drive the Iamtek IM-9400 Graphics Display System.-

3

...................i~i. ii i, -. i... , " - '"

'11

.1f

| - TII! QE Mg.guzui

I* INTRODUCTION *...*.****..... 7

II. HISTORY 000..O.000 1

A. TE PROBLEM OF NON-STANDARDIZED GRAPHICS SYSTEMS. 10

B. FORMATION OF THE GSPC 12

III. ISSUES CONSIDERID IN CORN DESIGN 15

A. FORMAT OF CORE 15

B. DIGRES OF PORTABILITY 16

C. SCOPE OF CORN 1............................... 17

D. VIEWING SYSTEM CONCEPTUAL MODEL 19

1. GRAPHICAL DATA STRUCTURE 19

F. ATTRIBUTES 21

G. TWO AND THREE DIMENSIONAL GRAPHICS 22

H. TIEING TRANSFORMATIONS 23

I. LEVELS OF CORN 25

IT. CORN SYSTEM DESCRIPTION 25

SA. OVERVIEW......... 25

C. OTPUT PRIMITIVE FUNCTIONS 29

C. SIGMINTS ,, .. ,. 29

D. ATTRIBUTES 39

I. VIEWING TRANSFORMATIONS 32

F. INPUT PRIMITIVESe** 33

G. LE VLS OF CORE 34

I. INVORONMNT INTERFACE PROBLIMS 36

4

TI. YOM N APPROACH TO COI 38

A. FUNCTIONAL DIYNERNCES 3

l. Segmentation 0.........o.o..................

2. Attritutes . *.....e *o.ee 0 @@S43

3. The Vieving Surface 42

4. Coordinate Systems 3... 43

5. Transformations 43

5. Text Manipulatlons .o............. 44

7. Visibillity 46

B. COlN FUNCTIONS NO? IIPLNMINTND By YGM 465

C. UnnCTIONS ImPLNIzINID BY TQ11 NOT IN CORE
SPNCIIICA!ION •.......ee. ee. 4?

! 1. Primitives 47

2. Attributes ... e..*000000** * 0004?

3. Otnr Features 4

D. NQIVAINNT FUNCTIONS VITI DIJJPNRllN NAMIS 00.,,, 49

VI. IN TGM DIVICI DRIVI 5

A. DIVICNtCARACIRISTICS TABLI 56

B. STRIA" INFORMATION TAJL . 59

Co RUN TIME INORMIATION TASLI 51

D. ROUTINES 1XBCUTING YGM PRIMITIVES 51

1. DEVICE INDEPENDENT LI3RART OF SHARABLE ROUTINES .. 51

F. DIVICI INDI NDNNT ROUTINUS GINERATING INSTRUCTION
CODIS 52

VII. INSULTS AND SISGUSTIONS FOR FUTURE STUDY 54

&. SOFTWARE ,0..0.0..00,0,.0................ 54

5

3. CORE IVALUATION 55

1. Portability 55

2. Implemeutatlos Iffort 5oo

3. Device Capability 5

. COlN Capability 57

C. OUTLINE OF CONTINUING DEVILOPMINT OF THE NPS
SYSTEM 57 * . * • • * • * • 57
1* IGM 58

2. Device Drivers 58

3. Portability 5...9..............* 9

APPENDIX A. IMPLEMRNTATION OF 1GM AT TE NAVAL
POSTGRADUATE SCHOOL *oooo*.*..e 61

APPENDIX 1. CONSTRUCTION Of A DEVICE DRIVER FOR TI RANTEK
IIM-94M 67

APPENDIX C. PROGRIMING VITE YGM so

BIBLIOGRAPHY 86

INITIAL DISTRIBUTION LIST 87

4

,o6

+ 127 1+ . + : m* . - . . -+ N '"

. . . . ' l 1il ll' m p. -- . -. .;. ,X , . ., - -

I. MTRODUCU2K~H

Computer graphics Is a relatively young technology and

Is expanding at an extremely rapid rate. As a recognized

discipline, It marts its birth vith Ivan E. Sutherland's

SKETCHPAD, in 1962. As the field has expanded, hardware has

developed alone several different lines. The available

devices range from computer driven mechanical pen and ink

and photocraphic film plotters, to refresh display devices

where digital stored images are repeatedly painted on a

televlslon-like Cathode Ray Tube (CRT). There are also

storage tube displays vere the CRT itself retains the

imame, thereby eliminating the need for storage and

continuous refreshing. The latest development has been the

raster-scan devices where a matrix of intensity values is

output to a refresh type CRT.

The software supporting these various devices has

developed along lines as diverse as the nardvare. Despite

wide variation in device capabilities there Is a large body

of graphics methodology that Is common to all display

systems. The existence of this body of shared technology

has contributed significantly to the movement tovard the

development of a software System that would be common

throughout the community of eraphics programmers.

7

The concept of a standardized graphics system is not a

new one. The publication of the ACH-SIGGRAPH Graphics

Standards Planning Committee (GSPC) report in 1977, however,

was the first widely accepted effort in the area of

standardization. This CORE graphics system Is, as yet, only

a proposal. CORN Is envisioned by the GSPC to be a first

step toward a true, industry-wide standard. The hope for the

current CORN system is that it will be implemented at a

large number of computer graphics installations and be

subjected to a variety of applications. Such widespread use

of CORN is the best way to fully- challenge the proposed

standard. Extensive use of the system will build a

comprehensive body of knowledge about it and should

highlight its strengths and weaknesses. Based on sucu

experience the system can be revised and restructured as

necessary until ultimately it is accepted as a viable

industry-wide standard.

This project is intended to be an initial step toward a

thorough study of the CORN graphics system at tue Naval

Postaraduate School. The lone'term goal of the research is

to implement the aSPC proposed system on the graphics

facility at the Naval Posteraduate School and critically

examine Its performance.

Vhen this research was begun, exposure to CORI at the

Naval Postgraduate School was limited to the Information

available in tue literature. No version of it was

8

operational at the facility. It was expected that the

progress of the work would be slow while experience vith

CORE was being accumulated. Since this study was the Initial

step, the emphasis was placed on producing a good foundation

for work that would follow.

Naturally, the first step In the study of CORE was to

implement a version of it. The PDP-11/50 computer and RS!-

l1M operatint system were the target environment for this

pease. The CORE software was Bell Northern Research's

Vitua ftia 1 Ift ine L1,]., which was donated by that

company to the Naval Postgraduate School for research

purposes. A detailed report on the system installation is

presented In Appendix A.

An Intermediate goal of the project Is to extend the

newly Installed CORE system to a variety of devices. Toward

this end the Initial steps were taken to incorporate an

interface with the Ramtek RM-490 graphics display system

into the CORE software. Appendix B describes this portion of

the research.

As part of building a knovledge base for later

research, tne CORE system and its development are discussed

in letail. The discussion is intended to aive enough of an

overview of the system so tnat tue reader will not need to

refer to the source documents except for essential details.

An examination of the relationship between YGM

implementation and the CORI specification is also provided.I 9

"1

ii. HIUhl

A. TE PROULIM 0 NON-ST&fD&lRDIZED GRAPHICS SYSTEMS

Until the mid 1970's Individual graphics devices vere

operated with their own specialized software systems and

their instruction sets were tailored to their own particular

capabilities. Programming techniques generally were

constrained by the device characteristics. Even program

structure could be dictated by the avalilable graphics

system. Added to these restrictions would be additional

requirements associated with Installation computing hardware

and operating systems. Such highly individualized equipment

meant that each graphics system required specialized

programs, and, In general, these were applicable for tnat

Installation and no other.

is the field of computer grapnIcs expanded, such

limitations became a real liability. The inability to use

one program at more tnan one Installation meant tnat for a

given application a new set of software would have to be

developed Individually for each combination of hardware and

operating system. The Issue of non-portability eventually

became an overriding concern of the industry.

If the programs for particular devices were

Individualized then so was the training of the programmers.

Every device required users to nave fairly extensive

10

knowledge of its operation. Rather than concentrate on

eraplcs in a broad spectrum, application proerammers cot

involved in very low level, highly detailed programming for

a specific device. This meant that much of the knowledte and

techniques developed by a programmer mignt be unuseable if

the levice were changed. Thus, a hardware change brought

with It the necessity for an in-depth trainine protram on

the new device. Further, the programmer would now nave to

keep the operatine details of each device separate in his

mind. Confusion of such details Is highly conducive to the

introduction of additional bugs into programs.

The prospect of working in a very restricted environment

and of being required to assimilate and differentiate a host

of idiosynchrasies, mnemonics, formats and operational

details no doubt caused many potential graphics application

proerammers to turn to other fields of specialization. The

graphics industry must count this to Its detriment.

Another problem, perhaps not quite as visible as the

portability issues, but certainly as worthy of concern, vas

the difficulty researchers In graphics had in building on

one another's wort. An application written, for example, for

a storage tube display, would have to be completely

rewritten for a raster device. The chances would be so

numerous tnat equivalence of tne programs would be

impossible to asserdt Also te full duplication of a piece

of work simply to adapt it lo a dlfferen environment as a

....

costly process in terms of time and resourcest both human

and machine.

B. FORMATION OF THU GSPC

In more recent years, there nave been some attempts to

remove the user from the details of device operation by

providing high level software. This typically took the form

of a package of subroutines callable from some standard nigh

level language. Such packages did remove tue need for

programmer knowledge of some of the device operating details

(though by no means all of them) but each package was still

unique. Thus, though a step forward had been made, programs

written from different grapuics packages were still not

portable.

The next step in tne evolution was to develop grapnics

packages that were still specific for particular graphics

devices but with a standard Interface to the user program.

This would allow transportation of user programs unchanged

to Installations where the standard" interface was

implemented. This development was moderately successful but

by this time, areas of research had grown up around

particular classes of graphics devices. User's of tne

various classes of devices all had their own idea as to

exactly what form the application program Interface should

take. These opinions were widely varying and as always, were

oriented toward the device capabilities.

121

Hlll

The various "schools" of graphics research eventually

realized that there were wide areas of agreement in their

concepts of how a user should see a graphics system. This

led to the next evolutionary stride, the standardized

eraphics package. These types of systems were desiened so

that not only would the application program/package

interface be fixed, but the functionality of the pacraie

itself would be unchanging. The need for Individualized

software for each particular device, however would not be

removed. This task would be accomplished by a "device

driver" and Its interface with the standard package would be

a fixed entity.

The first meaningful steps toward a standard graphics

package was the 1IP Working Group 5.2 Graphics

Subcommittee's Workshop on Graphics Metnodology held In

Seillac, Trance In 1976. Based on experience with existing

macnine and device independent packages like GINO-F and GPGS

the subcommittee laid tue groundwork for the movement toward

industry wide standardization. Their contribution was to

outline and define tne issues tnat had to be addressed If a

standard was to become a reality. As already discussed,

their prime concern was tue Issue of application program

portability. Toward this end their recommendation was that a

study of the structure of application programs was

indispensable, and that the results of such a study would

drive the specification of a araphics standard. Another

.

|1

outcome of the Sellac meeting was the assertion that the

separation of operations cencerzed vith creating a picture

of an object from those concerned vith manipulating the

object itself was essential. Lastly, the Vorkshop urged that

a standard graphics system specification not stand alone.

Along with the detailed design should be included the

methodolomy behind Its development.

In 1977 the ACM Special Interest Group for Graphics

(SIGGRIPH) appointed a Graphics Standard Planning Committee

to lesign an industry wide graphics standard. Using the

recommendations of the Seillac Wortshop as a foundation, the

GSPC designed the CORN graphics system. Their specification

for the system, and the methodology that led to it, were

published in August 1977. An updated version appeared two

years later incoroporating the experience gained in the

interim and extending CORE to raster devices.

.-

In the early stages of discussion, the Grapaics

Standards Planning Committee concentrated on e.-early

defining their goal. TneIr objective vas to design a general

purpose granbics system that would meet the needs of the

majority of Rraphics procrammers and would be simple to

install on most existing interactive displays.

It Is essential that such a teneral purpose system be

simple. This principle was recognized by tue GSPC and

strictly adhered to. They targeted their efforts toward the

potential users vita tae Intention of promoting well-

structured, comprehensible software. Syntax was considered a

less complex and secondary design issue. The committee also

sought to put definite bounds on the scope of the new

system. The Intention was to provide a system that would

offer a wide range of capabilities, but not at the cost of

losing its appeal as a teneral purpose tool. Two tradeoffs

that constantly cropped up before tue GSPC were simplicity

vs. wide applicability and program portability vs. machine

efficiency.

A. FORMAT OF COI

Tue GSPC considered taree approaches to development of

the core system. One possibility was to create a complete

15

new araphics lancuage. A second choice was to ate an

existing language and make tne core system an extension of

It. The third approach, and the one finally settled upon vas

to build a package of graphics subroutines. There are a

number of advantages to the subroutine packawe as opposed to

either of the alternatives. The major benefit is tnat it

requires no changes to either the language or the compiler.

System development, revision, and experimentation will have

no effect on any other software at the installation. The

primary limitation is that the syntactic structure Is

extremely limited since the only choice in this area is the

approach to parameter passing.

J. DIGRRES OF PORTABILITY

The degree of program transportability as measured by

the type of required changes was broken down into three

general categories:

I) The absolutely portable program which wnes

transferred from one installation to another would require

no changes whatever to the source code. Such programs are

the ultimate goal of any graphlcs standard.

2) Programs that require only editorial changes vithout

modification of structure. This class of program would

require adaptation to a nev installation In much the same

way that non-graphics programs written In a hlga level

1

laneuame have to be modified vhen they are transported. The

changes typically are tbose necessary to adapt to such local

idiosynchrasies as different character sets. These changes

do not require a graphics programmer or a specialist In tne

particular application. Many of them can even be automated

on a reasonably good text editor.

3) The least portable category of programs vould be

theose vhere changes to the program structure itself are

required. Such changes as having to create a particular

routine to draw an arc to replace a single command required

by a more poverful device fall into this category. Chanxes

of this type may require a detailed rnovledge of the

particular installation characteristics; even then they can

be somevat difficult and have a tendency to be error prone.

Realization of the absolute portability goal, was not

expected vhen the GSPC published their proposal. The

Immediate hope for the CORE system Is that it will

trastically reduce the number of changes required In an

application program when It Is transported. It is

anticipated that tie aroutine" bhanges of category 2 above

will be required In source code but, as a minimum, the

structure of the source program should remain intact.

C. SCOPI OF COal

Raving established the form the roposed graphics

standard vould take, and the results tUat could be expected

1?

from it, the committee set about defining the scope of tie

project. Recownizing the Seillac vorlsnop's wisdom# the GSPC

focused on "viewing" as the essential part of any graphics

system (its qU19 hence the name) and treated anything not

concerned strictly with displaying information about an

object as outside the scope of the standard. This is not to

say that such issues as modelling or graphic arts were

Iguored. The intent was to desieu a core vieviun system

upon whlch those functions dealing with abstract objects and

relations between them could be built.

D. FIEVING STSTEM CONCEPTUAL MODEL

Once the scope of their task was defined, the committee

developed a model that would adequately represent their

concept of the viewing system of te standard. The viewing

system can be thought of as a "synthetic camera" positioned

and oriented in a user defined "world coordinate system".

The display on the output device would be a "snapshot" of

whatever was In te camera's field.

Such an analogy fit well the rules the GSPC had

formalized. The "graphical world" was considered all of tne

graphical data available to the system. What would show up

on the output device would be a view of this world tarough

the eye of the synthetic camera. The camera might be able to

take in the entire set of graphical data or only a portion

of It, depending on the viewing parameters. To take an

18

imaginary snapshot, the system would have to be aware of the

camera's location In space, Its orientation, and the amount

of a particular object it could actually photorrapn (i.e.

its clipping volume). Furtner, at tne instant the snapshot

is taken, none of the parameters related to the object belne

photograpned could change. It must be remembered that what

is on the screen is only a part of the total information in

tie grapnlcal world.

1. GRAPHICAL DATA STRUCTURZ

Besides deciding how to display an object In the

graplical world the committee had to establish the

particular structure to be used to represent grapnical data.

The simplest approach would be to nave no structure at all.

Zither all of the graphical data Is present and fixed or a

new graphical world will have to be created. Thus, one could

only build or erase an entire object. Onc displayed, there

would be no changes to the graphical world. Such an approach

is very easy to implement and storage Is not a major issue,

since after the snapshot is taken, there Is no further need

of the data. Such a system Is ideally suited to hard-copy

plotters and similar devices but Its dravback Is that it

does not meet the needs of a large portion of graphics

applications.

Iluch of craphics is concerned with buildine an object

and selectively modifying only parts of it. This requires

19

first, that the araphical data not be lost after it is

displayed and second, trlat It be "segmented" in such a way

that Individual pieces can bc manipulated. Since there Is a

considerable demand for such structuring, the GSPC

Incorporated It into their standard proposal. Their concept

Is that graphical primitives (line drawing, text, and marker

placements) be grouped Into Indivisible and unchangeable

s-ga aul. Taese segments are then be combined to produce an

entire object. Thus the picture can be modified by pieces

throuch the deletion and addition of Individual segments.

In the interest of economy and flexibility tne CORE

system also implements a form of the simpler unstructured

option. For tae body of users concerned with storage

efficiency or having hardcopy displays, it is possible to

designate segments as MULIU_.r. & temporary segment is one

that would menerate graphical output while It is open, but

once closed the segment vould be automatically deleted. The

next "new frame" action will cause it to be lost altogether.

Effectively, while the image Is being created In the open

temporary segment the graphics system is unstructured.

Another possible structuring of graphical data would be

to use multi-level units to define tae graphical world. In

such a system, a "unit" (analogous to a segment) would be a

collection not only of primitives but also of references to

other units. This approach was considered by the GSPC to be

29

to complex for the bulk of current graphics applications.

There are many variations to Its Implementation, none are

easily accomplished, and all require a great deal of

bookeeping overhead since a channe to one unit may ripple

through several others that reference it. It should be kept

In mind, however, that If such a graphical structure Is

desired it is possible to construct it using tne CORE

system.

F. ATTRIBUTES

Vith the structure of graphical data settled upon, the

need arose for defining modifications to the described

object. Besides the primitive functions already mentioned, a

graphics system must have a means of further describing

thsm. For example, a primitive like "line" mignt nave

characteristics such as dashed (style), red (color), and

double thickness (vidta). Deciding now to incorporate such

* arib ehu into CORE was another major issue facing GSPC.

Some attributes naturally associate themselves with

primitives, like line style and width, while others just as

naturally only apply to vnole segments, such as viewing

angle or clippine volume. A problem arises with attributes

that are likely to be needed for both primitives and

segments. Color Is a typical example. The ability to produce

a drawine usine lines of several different colors might be

desirable. But if It is desired later In the program to

21

change the color of all dravinis to say blue, an ambiguity

arises In now to handle tne multicolored segment.

Si'The GSPC felt that resolution of such ambisuities within

CORE would take avay from the simplicity of their system.

Therefore they established the rule that no attributes would

be snared. Attributes would be spLcific for primitives only

or for segments only. The former would be static"

attributes and be unchangeable for a primitive once

declared. Segment attributes, on the other hand would not be

so restricted. These "dynamic" attributes would be

changeable to meet the user's needs at any particular place

in the program.

The decision as to Just which attributes would be static

and vich would be dynamic were based on two criteria. The

first beine that primitive attributes would be those things

that would normally be recorded by a snapshot of a

particular object. Attributes pertaining to the imaxe as a

whole would be segment attributes. The second criteria was

that an attribute would be dynamic, (i.e. a segment

attribute) only If most medium performance, refresned

display device architectures supported changing te

attribute with reasonable ease and efficiency.

G. TVO AND THI DIMINSIONAL GRAPHICS

&long with the questions of graphical data structure,

tie Issue of now to treat two-dimensional and three-

22

1-

dimensional graphics in a single standard had to be decided.

Initially the inclusion of three-dimensional graphics was in

question since It necessarily would add complexity to the

system. It was decided that the need for three-dimensional

graphics was great enough that Its exclusion would restrict

the applicability of the standard to an undesirable deRree.

A more subtle question than 3D inclusion was vhether to

treat 2D graphics as a subset of 3D or to handle the two as

disjoint sets of operations. The advantame of disjoint

treatment Is tnat the 2D expression would not be

unnecessarily complex since 3D information would not have to

be carried with tne. On tne other hand a large portion of

the system's routines vould have to be duplicated, one Rroup

specialized for 2D manipulation and another for 3D.

The GSPC chose the subset approach in the interest of a

unified treatuent for all Images. To foster simplicity in 2D

grapnlcs, they established that the z axis coordinate would

automatically default to tnat of its last specified value

when fitting 2D operations into the 3D format.

R. hIZVING TRANS7ORMATIONS

One of the most difficult Issues for the GSPC to decide

vas bow to treat viewing transformations of an object. There

are a large number of approaches to this problem and all

have a certain amount of merit. Vhen considering this

particular question the committee chose to aim for maximum

23

system generality. Toward this end, they established four

criteria. The first was that any vievine transformations to

be performed would be declared before description of a

particular object. No transformations within a seament would

be allowed. Secondly, two-dimensional transformations would

be upward compatible to three-dimensional ones. Third, all

general planar projections would be possible to Implement.

Fourth., parallel and perspective projections would be

consistent.

In tue discussion of viewing It is necessary to go back

to the synthetic camera model. In order to maximize

generality of the viewing aspect of CORE the parameters

under Investlation were those concernine the location of

the synthetic camera In space and tae location of the

viewing plane. The orientation of both the camera and the

viewing plane must also be considered. It should be apparent

that the most flexible viewing system is the one that allows

any orientation and any location for both the camera and the

viewing plane. Restricting the positioning of one or both,

limits the allowable viewing pyramid and results in failure

to meet one or more of the established criteria.

for example, suppose the view plane were restricted so

that it must always be normal to the direction In which the

camera is aimed. In such a case, oblique perspectives are no

loiter possible, which Is a violation the third criterion.

2'

I. LEVELS OF CORE

One of the final issues to be resolved vas the structure

of the CORI standard itself. The question was whether to

establish a single monolithic Standard or to allow a number

of "standard subsets" of a parent system. Realizing that a

very extensive system might be well beyond the needs and/or

resources of many installations, the GSPC settled on a three

*, level structure. The lowest level would be restricted to the

most basic needs of most users, stressing ease of

Implementation as well as economy of computing resources.
if

The upper two levels include more features and a hibter

. capability vita correspondingly more difficulty in

implementation. Each upper level of CORI includes all of the

features of the level below It.

25

A. OVERVIEW

In tae previous chapter most of the basic terminology of

CORE has been introduced. In this chapter the system itself

is discussed in detail, but before doing so, more

terminology must be Introduced. The information displayed on

the graphics display device Is referred to as a i_.Sllr. The

basic building blocks of pictures are _g.1]?ZIM! ,. An

output primitive is a line or sequence of lines, a non-

drawing move of the cursor, a marker placement, or a strinr

of text. A number of output primitives are grouped togetner

to form a segr.U. Each segment defines a single g1pt %nd

a combination of one or more objects defines an tMAp. The

1l . of an image can be thought of as 1 ,4aginary camera

snapshot of It. To obtain a 3-D projection of an Image the

user specifies tue imaginary camera position, type of

projection (perspective or parallel) and vere on the

display surface the object Is to appear. Different views are

obtained by "moving" the synthetic camera in space relative

to the stationary object. After the view of an imace is

determined the graphics system must map It onto the

particular device selected to show it. The CORE system does

this using two coordinate systems. Objects and images are

created in a user defined, previously specified _r.,

26

_.UIrnate Ux.Za. Vithin this coordinate system the part of

the total image that Is to be displayed Is framed by a

ovnow. The World Coordinate System is mapped by CORE onto a

set of no_ jjIL, inyaj, e Qtp I. • NDC

specification defines tue viewing area on the selected

graphics device that will be used. NDC's are specified as

fractions of the total available display wldtn and height.

The window and the visible section of the image In it are

mapped to the correspondine location in the normalized

device coordinates. Once the image Is in in terms of the NDC

It Is a simple matter for tne CORE system, enowing the

particular device characteristics, to translate it Into a

picture on the screen.

Liy graphics system must nave a %eans of controlling its

operating environment. In the CORE system tils Is

accomplisned by:

1) turning clipping on or off

2) selectine view surfaces for output

3) setting Initial values for segment and

primitive attributes.

4) establishing error handling mechanisms

To support the control functions the applic ation procram is

given tue capability to Inquire about tue system status,

variables and device capabilities. There is a "new frame"

function for screen clearing and a capability for grouping

changes to the picture.

27

Output primitive functions may be referenced eltner by

a segment identifier or a special "pick-Id" name. The pick-

id is used in conjunction Vith a pick device, vnichf vii be

discussed later In the chapter.

To allow utilization by tae system of specific nardware

and installation features, tnere is an elca2e mechanism. It

Is a standard, rigorously constrained function that allows

the CORE system to take advantage of the non-standard

capabilities of Its environment. Use of the escape has a

price In that It taxes away from the portability of tne

application program.

3. OUTPUT PRIMITIVE FUNCTIONS

Output primitive functions are the operations the

programmer uses to describe objects in the device-

Independent World Coordinate System. Invocations of these

functions are gathered into seaments as drawine commands.

Primitives work from the U n_ Eaiilnu L.) which is a

draving location In world coordinates. It Is simply a

starting point for application of the function, and Is

initialized to the origin upon seament creation.

There are five output primitives: single and multiple

line drawlncs, text display, and single and multiple marker

placements. These are only sligtly different for the two-

and three-dimensional versions. Coordinate positions may be

specified as either relative or absolute, but tae former is

29

merely a notational convenience. It does not necessarily

generate a relative positioning command to the hardware. The

concept of a marker in the CORE system is simply a

designation of a position in world coordinates. A particular

character appears on the view surface to indicate this

position but in world coordinates there is no such

character.

Three kinds of text are supported by the CORE system

output primitives: strina precision, character precision

and stroke precision. The main purpose of string precision

text is to supply information to the operator. Its

generation is simple and efficient. Character precision text

is used vhen it is important that a character strine occupy

a designated space, a plot axis, for example. String and

character precision are also referred to as low and medium

quality text, respectively. Both medium and low quality text

output primitives take advantage of hardware character

generators, if available. Stroke precision, or high quality

text requires a different approach. Here, the string is

treated as if each line of each character were generated by

software in the CORE system.

C. SEGMENTS

Sewments are created in the applications proeram.

Creation of a segment follows a simple sequence. The Vorld

Coordinate System is defined and normalized device

29

coordinates are specified. If desired, toe synthetic camera,

discussed earlier, is positioned to establish the viev of

toe object. Next, a segment is "opened" and toe object

described using the output primitives. After completing the

object description, tee segment must be "closed ". To modify

a piece of the picture a segment Is deleted and a new one

created to replace It. Segments are of two types: 1)

f..UIn, wlch are typically used for buffered displays and

2) uzpz rZ, which are most often used by plotters. As one

might Infer, temporary segments are used only once to create

a display and then are discarded. Retained segments are kept

by the CORI system until specifically deleted. Temporary

serments have the advantage of economy of memory

utilization. A segment's type is established vhen It Is

created and remains unchanwed for the life of the segment.

Copying one segment into another or Invoking one segment

from another Is not permitted under the CORI system.

D. &TTRIBUTIS

The effects or output primitives are modified by

assigning attributes to teem. For example, the primitive

"line" has an attribute "linestyle" which has values "solid"

and "dashed". Other attributes that apply to primitives are

color, character size, character precision, llnevidth and

more.

3.

Segments, 111e output primitives, also nave attributes.

These control such things as a segment's visibility,

highlighting within the segment and its detectability by a

pick device. This last is a particularly important segment

attribute. When a segment is detectable and a pict is

enabled, the device can select a primitive from the segment

and return to the application program both the seament name

and the primitive's k€Ld.

Vitn tue exception of type, segment attributes are all

lynamic" in that they may be changed after the segment has

been created. If tue user does not specify attribute values

prior to segment creation, the COI system provides a set of

default values.

Segments are assigned attribute values from a table of

current attribute values maintained by the System. The

application program aas the capability to interrogate and

change attributes. Por primitive attributes changes can only

be made vhile the segment is open; segment attributes, on

the other hand, may be chaneed at any time. A sinele

attribute cannot apply to both primitives and segments. If

certain attributes are not supported by hardware, the

options are to either simulate teem or force a reference to

an error handling routine. The choice is installation

dependent.

Besides segment and primitive, attributes can be

classified by the "space" In which they operate. For

31

example, text attributes describe the text regardless of its

location or orientation. They are said to define
i"*

characteristics in "object space". On tae other hand, line

attributes such as style and width are related to views of

objects. Depending on the location of the synthetic camera

these attributes of an object may appear different for the

same value. They are sail to operate in the "picture space".

2. VIVING TRANS7OMATIONS

A viewing transformation accomplishes two taskrs: it

specifies how much of the world coordinate space is visible

and it maps visible world coordinate pictures Into

normalized device coordinates. The vievine transformation

tates a world coordinate volume (a clipped portion of a

complete display) and projects it onto a view plane in world

coordinates defined by a windo. The projection Is then

mapped into a normalized device coordinate view~ni, and

finally to the physical device coordinates. The core system

avoids a problem that has occurred In the past where two-

dimensional objects required different treatment. 2D objects

are treated as a subset of the 3D objects. Vhen a Z

component Is not specified, a default to the Z component of

the current position Is effected.

Vindov rotation or inclination Is a common requirement

for many applications. In the CORN system the concept Is

implemented using a v 121 vector. This vector simply

32

1

points to tne straignt up" direction for the window with

respect to the world coordinate orthogonal 1, T, and Z axes.

F. INPUT PRIMITIVES

Six types of input devices are supported by the CORE

system:

PICKS: identify an output primitive by its segment

name and pice-id.

LOCATORS: provide world coordinate values for a position

on the view surface.

VALUATORS: provide a scalar value.

KITBOARDS: provide character strings.

BUTTONS: provide a means of selecting from several

alternatives.

STROKES: provide a series of positions to the

application program in normalized device coordinates.

Input for Interactive graphics is accomplished through

logical input devices. These devices are a specified

abstractly in the application program. The program defines

and controls them in a way unaffected by tne nardware. The

CORE system's task In interactive grapnics is to connect

logical input devices to an available piece of hardware that

will accomplish the desired function. Logical input devices

may be manipulated in the folloving ways:

1) Initialization/ termination

2) lnablina/disabling

i33

3) Event queueine/ dequeueInx

4) Sampling

5) Associating sampled and event causing devices (this

ties values provided by sampled devices to events caused by

event-generating devices)

S) Echo control

Logical input devices fall into two mutually exclusive

catemortes. They are either sampled devices or event causint

devices. Strote, pict, teyboard and button are event

generating devices; locator and valuator are sampled

devices. Event-causing devices provide signals to the

application program. For each event, an C1111 j9_rj Is

created containina data related to the state of the device

at the time of the event. The CORE system enters event

reports in an Mal gun, for later use by tne applications

program. To get state information about sampled devices, the

application program must query tnem. These devices do not

generate event reports. A standard feature of the CORE

system is to echo automatically all operator interactions

unless this function Is specifically deactivated.

G. LEVELS OF CORE

To meet the wide range of installation capabilities and

requirements, an upward compatible three-level structure for

the CORI system was selected. The aim was to accomodate wnat

were considered the most common classes of equipment and

34

L e. . " . d .;mdm .um~ .S .d . .ma- ,,. . b. ..

applications. The most basic level of the CORE system deals

strictly vita output. There Is no interactive capability and

the segments are of the temporary type only. This level

consists of the output primitives and their attributes,

viewing transformations and device controls.

The next level adds the ability to retain selected

segments. It still is limited to output only operation. The

visibility and highliagting segment attributes also are

included. The third, dynamic level, allows use of the input

capabilities. This Is the level at which interactive

graphics Is supported. It provides all the functions

intended to make up the complete core system:

1) Output primitives and their attributes

2) Viewing transformations

3) Device control

4) Temporary and Retained segments and tneir attributes

5) Input primitives

5) Imase transformations

Level three Is further divided according to the

capability for imaee transformation:

3A) Two-dimensional translation only

31) Tvo-dimensional translation, rotation and scale

3C) Three-dimensional translation, rotation and scale

As with all of the levels, these sub-levels are also upward

compatible.

35

Complications with such a level structure are likely to

arise at installations vere there is a combination of

different graptics, devices, Vhat Is envisioned for such a

ftcility is a body of device Independent code linked to

Individual device drivers. The intent Is to stare as much of

the Independent cote as possible, thereby keeping as much to

the objective of probability as feasible.

H. ENVIRONMENT INTERACE PROBLIMS

Despite a areat deal of effort to make the CORE system a

stand-alone estity, operating systems and programming

languages still impact upon it. For instance, there Is no

stantard vay to 'iaze device driver routines available to the

application vhen the system is Invoied. Methods can vary

videly depending upon computer and operating system

capabilities. Another problem Is the case vhere a system

messace is sent to a terminal vhere the CORE system has been

invoked. The state of the display may be changed without the

system beina aware of it. The consequences of this lepend on

the situation, but system reliability will certainly be

demraled.

There is as yet, no definition of a standard Interface

with programming languages. It Is hoped that as more insight

and experience Is gained, a standard language interface will

be developed and the CORN system will be able to be Invoked

from more than one language, adding a new dimension to its

36

portability. Input/output also has problem potential If the

programming language and the CORE system are operatine on

the same device. Resolution of this is still highly language

and device depentent.

3?

-4

V. TZ! M APPROACH ~~2

The !ILUiI naci_ s ! 101e_ I is Bell Northern

Research's Implementation of the CORE graphics system. It

vas developed on an IBM 3033 In ANSI standard FORTRAN and

later modified to operate on a PDP-11/?0 under the RSI-11

operating system. YGM is a FORTRAN based set of subroutines

with each subroutine corresponding to a CORE primitive

Invocation, attribute setting, or view transformation. Tne

package also includes subroutines for control purposes, such

as Initializing devices, opening segments and setting up

coordinate systems.

The Intended customer marEet for VGM is Installations

with low and medium cost "Intelligent" terminals which are

capable of fenerating erapbical output from fairly hueh

level functions and primitives. Terminals not accepting such

high level input will require intermediate software to

either simulate the functions or break them down to lover

level primitives compatible with the device.

Under RSX-li, VGM exists as a library of FORTRAN

subroutines. To use YGM, the application program Is

created independently as a main program making calls to the

YGM library. The application source code is tnen compiled

independently. The connection with YGM is made by the RSI-l

Task Builder. The application object file and the

38

appropriate routines from the YGM library are linked Into a

single task by that RSI utility.

Included in the VGM library is the particular subroutine

that establishes communication between 1GM and the selected

device. This segment of code has to be created specifically

for the Installation vnere VGM is to be implemented. This

routine, SELSTR, is the only executable code In YGM that

interfaces vith the device driver. Graphical data is passed

between 1GM and the driver via a COMMON block of memory.

What SELSTR does is set te necessary flags to control the

concurrency between the application task (linked with VGM)

and tne selected device driver tasts. Each device driver

exists as a separately compiled and linked task. Under RSX,

before invoking any driver from YGM these tasks must be

INSTALLed by the user.

In VGM, syntax Is a very minor issue. Since the parent

language Is FORTRAN, and the entire system is based on the

subriutine call, the only syntax Is the manner in which the

necessary parameters are passed.

It should be expnasized that YGM does not implement tue

CORN graphics system exactly as set down in tue 19?9 GSPC

report. There are a number of differences, vnlce may be

grouped into four general categories.

A. FUNCTIONAL DIFTURNNCIS

In this category the end result of a series of

operations In TGM is the same as that specified by CORI but

39

the mechanism for achieving the result is not the one

specified in the proposal.

The CORE system creates a retained segment or a

temporary segment vith a single function specific for the

particular segment type. VGM uses a two-step process. First,

a segment type is established. After the invocation of the

routine to do tnis any segment created viii tate on the type

of the one declared. All segments created will be of the

same type until a new type is declared.

Retained segments in YGM are stored In TriAsrg

Disilaz JU& £.JDFs.. The TDF contains graphical

information that Is ready to be translated into a device

compatible format. All clipping and transformation has been

done before the data is entered in the TDF. Should the

application program specify an operation on a segment, the

entire TDF Is lizely to be changed. Segments that are

specified to be temporary do not cause creation of a TDF.

2. _ " ll" es

Like CORE, VGM partitions attributes according to

their application to either segments or primitives. Both

systems further divide the set of attributes according to

their changeability within the program, dynamic attributes

being those that are subject to change by the application

program after their Initial leclaration and static

40

attributes being those that are not. In CORZ there are no

-ynamic primitive attributes. VGM, however, does have a

group of primitive attributes that it labels as "dynamic".

Sach member of the set of VGM dynamic primitive attributes

is also a member of tne set of static primitive attributes.

In VGM a static primitive attribute Is one that is

set while a seRment is open, and that once declared, applies

to all appropriate primitive invocations following it until

the segment is closed. Further, for the lifetime of that

segment It will always apply to the set of primitives

created with It. A static primitive attribute cannot be

overridden by any other setting of that attribute anyvhere

in the prowram.

If no attributes applicable to a particular

primitive are set within a segment then dynamic primitive

attributes may be assigned outside tne segment. At a later

timq in the promram these attributes may be chanced. When a

dynamic primitive attribute Is set, tne segments to which

the chance applies must be specified. If tne application

proaram does not set either dynamic or static attributes for

some primitives then default values are used. It is also

possible for the user to specify his own set of default

values.

The applicability of an attribute to a primitive at any

particular time In the proaram can be determined by the rule

that user specified dynamic primitive attributes alvays

41

override default values and static primitive attributes

always override dynamic ones.

3. Ift ILIUur air&u
The flow of graphical Information from a segment to

an output device is viewed by VGM as a "stream". By

,anipulating streams, the user carries out the CORR

SILICT/DISILICT and INABL/DISAILI device operations. In VGM

vhen the user initializes a stream, he Is picking a

particular device or group of devices for output. Devices

are assigned to a specific stream as part of VGM. A given

stream may have more than one device associated with it.

Changing this assignment requires changes to the VGM source

code itself. Stream initialization by the user's subroutine

calls accomplishes the necessary operating system functions

to link VGM and the appropriate drivers. It is valid for

more than one stream to oe in use at any given time.

After Initializing the required treams the user

then selects one or more of them to be used for display.

Once a stream is selected, all subsequently generated

graphical output will be displayed on the devices assigned

to that stream until It is deselected. There is no way to

address individual devices on the same stream. Stream

operations are not allowed while a segment, regardless of

type, is open.

42

I°

VG. uses an extra coordinate system In translating

graphical data from vorld coordinates to tne terminal

ftZs1.al gUUI= Q nAu PC. Betveen the

transformation from World Coordinates to Normalized Device

Coordinates, VGM taxes clipped graphical data and maps It

onto a view plane in 11n lIM C..Oi sl, The flov

of craphical data is shown In Fignre 1.

[project [project/ map to ;
cli € p on to P- v wndow ND. phlysical E
[Image[view plane I "to view I - device

:. , , port J c oo r d i n a t e s

Figure 1. Flow of craplical Information through coordinate
systems

5. ZUIUZfa3uL1

In the CORE specification tnere Is a static segment

attribute called IMAGE-TRANSFORMATIONTYPE this specifies a

maximum allowable level of transformation that can be

applied to a given retained segment. There are four

allowable levels:

a. no transformation

b. 2D translation only

c. 2D translation, rotation and scale

d. 3D translation, rotatioa and scale.

43

This feature is not included in VGM. The transformations of

2D or 3D translation, rotation and scaling may be applied to

any retained segment at any time In the program.

In CORI, the manner in which text is displayed on a

device is controlled by, among others, tne attributes

CHARPATH, CRARJUST, and CHARUP. The first attribute

specifies one of four paths in the view plane: up, down,

right or left. As the sequence of text is output CHARPATH

determines where in relation to the last character the next

is to be positioned. The first charact&r is always

positioned at the CP. The CHARJUST attribute is a

combination of directions, again in tne view plane, vtch

Indicate where, In relation to the CP, the rectangle defined

by the output text string is to be placed. Figure 2 gives

the possible CP locations.

left center rignt

top ----- a •

off L...-

bottom _

7igure 2. Possible position designations of CHARJUST

The text, depending upon the charjust values will be placed

in such a way that the CP will be at a Junction of a

44

vertical and a norizontal line. A particular junction Is

ilentified by its horizontal and vertical position labels,

e.g. "left, top" - point a; "center, off" - point b. The

CHARUP attribute is a vector from the origin In World

Coordinates which specifies the "up" direction for the text.

These three CORI attributes are not specifically

Implemented in VGM. Instead, their functionality Is Included

In the YGM attributes CHARPLAN2, CHIASIZI and CHARSPACR. The

text string orientation Is defined by the CHARPLANI (a

vector in Vorld Coordinates originating at tne CP) and a

"string extent" vector. The string extent vector is obtained

from the CERkSPACI and CHARSIZI attributes. Fiaure 3

illustrates the components of these two attributes.

b{T-
dV

a a CIARSIZR x component
b - CHIASIZI y component
c a CHARSPACI dx component
d a CHARSPACI dy component

Figure 3. CHARSIZZ and CHAISPACI attribute components

45

the string extent Is the result of multiplying the vector

'T' by the number of characters. 'V' originates at the CP.

The boxes containing the text characters will be In the

character plane with their lover left corner on the string

extent vector. A wide variety of directions the text may

follow stems from the fact that values for the attribute

components can be positive or negative.

7. Vi LLLI
In CORE there is a segment attribute called

VISIBILITY which, if on", means to display a specified

segment on the output device and, if "off", to remove it

from the screen. This capability also exists in VGM where a

segment nay be POSTed to make it visible or UNPOSTed to

remove It from the picture.

B. CORe FUNCTIONS NOT IMPLEMENTED BT TGM

The following list of CORe functions are not implemented

at all in VGM:

1. pen attribute

2. markersymbol attribute

3. pick.id attribute

6. naming of primitives

5. view.up vector

S. some inquiry routines

7. terminate_, disable_, and enable_group routines

8. batch update[46

9. escape mechanism

I@. nighlignting

11. hierarchical level structure

12. acceptance of asynchronous Input

C. FUNCTIONS IMPLIMINTID BT TGM NOT IN CORN

SPEC FICATION

The following primitives have been added to 1GM:

a. rectangle

b. arc

c. polygon

d. flood

The flood primitive is for use with bit mapped,

color devices. Flood locates the CP and establishes the

smallest area surrounding it bounded by arcs or lines. Tais

area is then filled vith a user specified color. If the CP

Is not enclosed tnen it Is possible to flood tne entire

display surface.

2. Allr tlu:

For terminals capable of color graphics 1GM adds a

BACKROUNDCOLOR attribute and an ADDITIVIMODI attribute.

The former is self explanatory. The latter determines hov a

declaration of any nev color attribute is to be treated. If

ADDITIMODS is "on" then the bit pattern for the old color

is loaically Oled with the bit pattern for the nev color,

47

and tne resulting pattern becomes tne value of the

attribute. Otherwise the new color bit pattern simply

replaces the old one.

L BLINK attribute Is Implemented In VGM, wich Is

Intended to be one method of replacing the CORE system

HIGHLIGHTING attribute wvica &as been left out.

3. QlktZ ZiaL.IUu
In VGM, there is a mechanism for modifying a

segment after it has been closed. This Is the BITSBG feature

which effectively re-opens the segment and allows additional

graphical information to be appended to the existing file.

The feature only allows addition of informatlon and requires

that the CLOSEG command be Issued after the addition is

complete.

If a traphics device that is currently in use has

both input and output capabilities, VGM will, If directed by

the application program, back transform" input coordinates

from Physical Device Coordinates to Vorld Coordinates. CORE

will only back transform to Normalized Device Coordinates.

VGM's error handling and debugging aids offer more

than is required by the CORE proposal. In VGM the user has

the capability to specify tne maximum tolerable error

severity and the mazimum tolerable number of errors. If

either maximum is exceeded, te program will terminate. Vnen

errors are detected, an entry is made Into an error trace

48

-t

file. This file Is Intended to be a debugging tool. It

contains the error code number, a brief description of the

error, the relevant parameters Involved In the error, the

name of tat routine In which the error was detected and the

result of te error (corrected, ignored, default

substitution or program termination).

An option that GSPC left open to imp ementors was

how to treat non-sraphical tata sent to a terminal beine

used for CORI graphical output. Typically, tals might be

parent languaae I/O In the form of write statements or a

system message to te particular terminal. In VGM there Is a

SITPOSITION function which identifies an NDC position

specifying where non-graptical output is to appear on te

screen. This output is affected by neither attributes nor

the CP.

D. SQUIVALENT FUNCTIONS VITH DIlFZRINT NAM]S

Tnis Is the simplest category of differences between

CORI and VGM. Below Is a short list shoving equivalent

functions in CORE and 1GM.

-narpreci si on cnarqual i ty

detectability pickability

highlightlaf blink

world coordinate modelling transformation
transformati on

49

VI. TEN !itj MICEI PJ

The device driver is the connecting link between VGM and

graphics hardvare. Its purpose is to tate grapnical data

from VGM via the designated COMMON storage area and

construct an instruction in a format compatible with the

particular device it Is written for. Tne software for the

device driver is divided into 6 modules.

A. TH DEVICE CHARACTIRISTICS TABLE

This table is a COMMON block of variables describing the

characteristics of the craphics device for vhich the driver

is written. It Is Implemented as a BLOCK DATA source program

and Is accessed by all of the executable modules of the

driver. It is initialized when the module Is compiled and is

treated as "read only" by all of the routines referencing

it.

3. THE STREAM INORMATION TABLE

This is another COMMON block of data wnich holds tne

current value settings for attributes for each stream. The

table is updated by the driver routines as the values are

changed. Ven the BLOCK DATA source file is compiled, the

default attribute values are set.

5,

C. TE RUN TIME INFORMATION TABLE

This table, like the stream information table is subject

to continuous update by the device driver routines. It

contains the buffer teat holds the instruction to be sent to

the graphics device. Pointers required for seeping current

positions in the instruction buffer (CODBUF) are also in the

run time information table. In addition there are variables

for the identification of the debug file and several host

computer related values.

D. ROUTINES EXECUTING VGM PRIMITIVES (OnLIBl)

This module is executable code that Is Intermediate

between VGM and the device instruction creating portion of

the driver. Its routines are Invoked from VGM and it In turn

calls routines to create the appropriate data to fill

CODBUY. OnLIB1 is graphics device Independent but Is host

machine dependent. Contained in OnLI31 is the OnEXEC routine

that Is the only executable code in tne driver softvare that

communicates with 1GM,

9. DEVICE INDEPENDENT LIBRARY OF SHARABLE ROUTIN16 (SKELIB)

This collection of routines is a set of device

independent operations that are optionally available to

OnLIB1. These routines perform operations like projection on

a plane, clipping, image transformations, line style

generation etc. For highly capable devices which perform

these tasks themselves OnLIB1 would not reference SKELIB but

51

instead cause the specific device instructions to be

generated. For devices that lacie some of these features in

nardware, SKELIB provides software simulation.

F. DEVICE DEPENDENT ROUTINES GENERATING INSTRUCTION CODES

(OnLIB2)

This set of subroutines fills the instruction buffer

vith instructions and data specifically formatted for tne

target device. Each byte of CODBUF must be precisely set to

bOe compatible vith the graphics device. OnLIB2 builds tne

full instruction and, ven complete, causes it to be sent to

the terminal. The communicatlon with the terminal is done

with MACRO routine QVRITE which uses the host computer's I/O

communication facilities and treats the graphics device as

an I/0 port.

Ill of tne device drivers snare the stream information

table and SKELIB. Each driver installed with 1GM however

must contain each of the other four modules. The inter-

connection of tie various device driver modules is snown in

Figure 4.

52

! TGM

DATA CHARACTIR-

Ficure 4. Interrelationship of Device Driver Modules

53

VI I. iZ AnD t T.i2!i MQ ZLIUU- Mai

A. SOFTVARE

As stated in tne Introduction, tne purpose of tnis

research was to lay the groundwork for a detailed study of

the CORE graphics system. A great deal of procress has been

made in this effort. The TGM Implementation of the CORE

system is installed at the Naval Postgraduate School and is

capable of operating vith the Tektronix 4014 storage tube

display terminal. The system has passed the Initial stages

of testing. Additionally, algorithms nave been developed and

Implemented on a limited basis for expanding the VGM

software to Interface vith tne Ramtek RM-9401 graphics

system. These portions of the project are discussed in

detail in Appendices A and B respectively.

A less taneible, but equally valuable result of this

study Is the experience and insight gained vith both CORE

and the VGM Implementation. Appendix C is one product of

this new knovledge. It is a brief tutorial on programming

vith 1GM and is vritten specifically for the Naval

Postgraduate School installation. The tutorial is not

Intended to replace the Bell Northern Research User's

Manuals. It is meant to be used in conjunction with tnem and

deliberately avoids details vhich can easily be found by

referencing them.

54

B. CORE EVALUATION

The CORE system is currently only a proposal and as such

it Is Intended for thorough scrutiny by the graphics

community. In researching tnls subject a number of issues

have been identified vhich may provide a framework for an

evaluation of tne system. This collection does not purport

to be exnaustive but is presented to provide a base for

future work.

The prime Issue to be evaluated Is that of proaram

portability. This nas already been discussed In depth In the

GSPC proposal and summarized In this report In Chapter III.

In the course of this study some different perspectives on

the problem have come to light. It appears that there might

be hierarchical levels of portability other than those

listed in the GSPC report. Graphics devices, computing

systems, operating systems and CORE Implementations are all

variables In this area. Another way of classifying the

portability of a program might be in terms of these

environmental factors. For example, some programs may be

portable from one device to another as long as the computing

environment is not chanted. Others may survive a ehanep of

computing machinery provided %me operating systems are the

same. Conversely, changinm operating systems rather than

computers milt be tne defeating factor In a program's

55

portability. Tet another possibility is that different

Implementations of CORE may be the reason for cnanges in a

given program.

It vould be difficult to develop further the portability

issue from this point of viev until a variety of

environments exist for side by side comparisons. The

presentation of this perspective is recorded nere so tnat

vhen such facilities are available its validity can be

considered.

2. ImleUl+u UfgrI1

To gain widespread acceptance the CORE system must

be easy to implement. Criteria are needed to measure the

difficulty of implementation. The folloving list presents

questions vich may serve as possible evaluation mechanisms

for this:

a. Can the implementation be reduced to simply

following some kind of implementation

Saleori thnm"?

b. Does tne design of the implementation

favor one type of device over anotner?

c. Does the design of the implementation

favor one computing environment (eitner hardvare

or operating system) over another?

d. What tradeoffs in portability have to be made so

that Implementation can be facilitated?

56

3. GlIqilie

As is true of almost all standards in the computing

industry the CORI system does not take full advantage of the

hardvare capability of many installations. It was never

intended to meet all possible needs. Nonetheless a means of

assessing the loss In device capability under the CORE

system should be established. a guideline for determining

vnen the gains from using CORE are outweigned by the losses

from not utilizing the full power of the device would be a

aighly desirable tool, particularly for facilities

generatine a vide range of graphics applications promrams.

4. CORN 2AR)JbuZ

Perhaps the most difficult and controversial

question in the evaluation of CORE is vhether Its

capabilities really are sufficient for most grapnics

programmers. Purther, how adaptable to future needs will the

system be? Is hardvare technology likely to progress to a

point where CORN is no longer adequate as a standard? Is it

likely tnat computer graphics will expand Into areas that

CORE was never intended to serve? Certainly none of these

issues will be resolved easily. Each question in itself

could be a topic for detailed analysis. They are presented

here just to suggest areas for further study.

C. OUTLINE OF CONTINUING DNTULOPMNNT Of THE NPS SYSTEM

In the course of this study some ideas have been

formulated for a methodology to direct continuine wort on

57

the project. This is only one worker's point of view and it

should serve as a guide rather than an absolute to follow-on

workers.

1. 1GM

The first order of business should be to modify the

Bell Northern Research test routine, AKPA9, so that the full

range of VGM functionality can be verified. This would

entail construction of appropriate overlays for the test

package so that the large amount of object code can be

accomodated on the limited PDP-11/5 memory. Once this is

accomplished, &[PAK can serve as a benchmark proeram for

testing additional drivers that are added to VGM. Using

AKPAr as a benchmark should also aid in studyine other

portability Issues.

The pattern for writing the code tnat interfaces the

device independent portion of a software driver and the RM-

9496 has been established. Further, it has been partially

implemented and tested. The next step is to complete the

remaining subroutines In the 04LIB2 (device dependent

routines) module according to the algorithms provided in

Appendix B. Once a new 04LIB2 has been built it can be

incorporated into YGM and tested, first as a separate entity

using the provided DDTIST program and then as a fully

integrated part of VGM usine AKPAK.

58

0

By no means would this complete work on tee Ramter

driver. After the 04LIZ2 work is completed the driver would

still fall far short of taxing full advantage of the power

of the RM-9400. A topic of study all its ovn would be the

modification of tie "device-independent" sections of the

driver code to put the sophisticated features of the RM-9400

Into use.

An ancillary project would be to develop yet another

driver for a new graphics device. The object of this study

would not be to merely expand the capabilities of the

existing V3M system. What it is hoped would emerge from such

research is a pattern for vriting device drivers. Such a

formula, if It exists, would be a very useful tool for

further expansion of YGM without the necessity of re-

learning already established techniques.

3. ZEaU llIIaZ

Vith a fully operational VGM system and a variety of

devices available for use, portability testing can bewin.

The suggestion is to direct the work along lines mentioned

earlier in this chapter in section B. After varyine the

graphics devices and studying the system behavior over a

variety of them, work should proceed to studying proeram

behavior under changes in the computing environment. Otner

operating systems, other computers, and other CORE

implementations are available for such research. This

59

variety of environments In a single location would provide

an excellent test bed for tflorouga evaluation of tne CORE

stanlard.

60

APPINDIZ A. 1IMEMNTALUNf 2Z 10 il MU!A N2UiA"RA

The aim of this portion of the project was to gain

insitht into the operation of VGM and to install a worting

version of it on the Naval Postgraduate School's grapaics

facility. Bell Northern Research (BNR) of Ottawa, Canada

supplied the school with a tape containing the source code

for VGM, version 1.1. and two device drivers. One driver was

written for a Chromatics color graphics, raster scan

terminal and the other for a Tektronix 4011 storage tube

terminal. A Tektronix 4014 was readily available at Naval

Postgraduate School and, being a simpler device, was deemed

the best choice for installine and testing TGM.

On the same tape as the VGM and device driver software

were several command files to aid in InstallinN the system.

These command files did such things as compile the source

modules, Install libraries and build %asks. Their Inclusion

was intended to save some user time and effort and to help

avol erroneous or Incomplete system commands that might

arise durine any of the Initial stages of software

Installation.

The plan for implementation was the following:

A. Compile all of the source modules making up YGM.

61

1

B. Convert the YVl object code into a FORTRAN library under

RS1.

C. Compile all of the source modules making up the Tektronix

device driver.

D. Lint te object code from tne device driver compilations

into a single task called 02DRIV.

1. Test the driver separately from VGM by using a test

routine supplied by Bell Northern Research.

F. Install 02DRIV under RSI as a task available for

concurreut use*

. Test VGM itself using the Bell Northern Research supplied

test craphics program AKPAK.

Before any of the installation could begin, the softvare

on the tape had to be made easily accessible. This was done

by copying it onto the RSI on-line disk storage. A copy of

the JNR softvare may be found under directory DPO:[201,211].

This copy of the source code Is intended to remain unedited.

Any chances to the code during YGM installation were made by

transferring original copies to a working directory and

editing there. To generate object code the modules necessary

for YGM and the device driver compilation were PIPed to

directory DP3:[201,211]. Once the source code vas available,

the command file TGMCOM.CMD was executed. VGMCOM.CMD had to

be modified somewnat to make It compatible with the 74P

compiler. The]NR softvare was written under an older PDP

62

version of FORTRAN so tie complier commands had to be

adjusted accordingly.

In all* VGM contains 12 output modules and 7 Input

modules. Bach module Is, in turn, made up of several

subroutines grouped by the particular function they perform.

For example, the output module INISTR (INItialize STRIng --

named for the first or the component subroutines) contains

16 separate subroutines all having to do with either stream

or serment manipulations. There are also two block data

modules and a test program.

Once object code vas generated for all of the VGM

routines, command file VGMLIB.CMD vas executed under the RSX

LIBRARY utility, creating a library of all the executable

routines concerned with input and output.

The compilation process was repeated for the source code

modules for the Tektroniz driver. Command file 02DCOM.CMD

accomplished this. The device driver modules consist of two

"libraries" which manipulate the device Independent

Information coming from IGM. A third library, 02LIB2, does

the actual creation of instructions to the Textronix. 02,132

is the portion of the device driver that links VGM and the

terminal. There are also some block data modules which set

up communication areas between the device driver and VGM and

also provide specific device parameters where needed to both

VGM and the device-independent portions of the driver. Two

MACRO modules are included to handle input and output

63

4

communication between the device and the operatine system.

The rest of the driver related modules concern themselves

with Interfacing the device independent parts of the driver

and TOM itself.

Like TGM, the object code for the device driver modules

are built into a library under RSX by file 02DLID.CMD. This

library hovever is only a temporary holding area for the

driver object code. It is referenced by tne file 02DRIV.CMD

and the object modules are linked together Into a single

task called 02DRIT.

With TGM existing as an object library and 02DRIV as an

individual task the preliminary work is done. Testine is

accomplished in tvo stages. The first is testing the

functionality of the device driver independent of TGM. The

test program, 02TST, was provided by Bell Northern Research

and was compiled with the rest of the driver routines and

block data programs. The file 02TIST.CMD links tne test

protram, the driver library, and the block data into a

single executable task called TRETIST. TIETIST exercises tne

driver's functionality fully and is available for use in

directory DP3:[(291,21SJ.

After tne driver was satisfactorily tested alone, the

task 02DRIV was INSTALLed under RSI. The INSTALL feature is

an IS! utility tuat activates a specified task and makes it

available for invocation from another active task.

K 64

The next step is building the VGM test task. The test

routine, AKPAK, Is also supplied by BNR and Is intended to

thoroughly test YGM and any selected device driver. The

command file provided to build tne A[PAK task Is YGMTKB.CMD.

The initial attempts to build the test program resulted in a

Task Builder diagnostic Indicating that not enougn

contiguous disk space was available for the AKPAK task. This

was partly a result of the fact that AKPAK and the

associated VGM library routines require a very large block

of AlSir storage. This is also indicative of another

potential problem. Since the AKPAK test is such a large one

It is not likely to fit into the available core memory. It

will most likely require construction of overlays to run on

the limited memory resources of the PDP-i1/59 at NPS.

It was decided that at least for the initial phase of

study to follow a somewhat shorter and simpler testing path.

Rather than become involved in constructing overlays and

possible chances in the structure of A[PAK, a more limited

test program would be written. Since one goal of this part

of the work was to et an operational VGM system it was

decided to at least ensure the proper interfacing between

the user program, YGM and 02DRIV.

Toward this end, a much simplified test program was

written, called VGMTST. It was linked witn VGM and the

necessary block data routines by file VTST.CMD. VG"ITST

exercised several of the 2-dimensional drawing, move, and

65

marker primitives, the low quality text capability and the

SUTPOSITION feature. In addition, some of the device and

seement control functions were also tested since their use

Is essential for any TGM operation.

The execution of VGMTST was quite suceessful. The

dravings on the Tektronix screen appeared as expected. The

task is available for use under directory DP3:L201,210). To

use the test routine, turn on the Tektronix 4014 and log in

under 231 by the standard procedure. Enter the proper

directory by typing

SIT /UIC - [201,210j

after the RSI prompt (>). Next, vnen tne prompt appears

issue the commands

>INS 02DRIV

>RUN TGMTST

The test program vii execute and tne resultant grapnics

will appear on the screen.

'. 06

APPENDIX B. _AZI?_ T i Q1 a DAM! __!I FO] THU WINK

A. DEVICE DRIVERS

Bell Northern Research's device drivers are Identified

by unique integer designations, the particular integer beine

Incorporated into the driver name and tne names of tne

modules that comprise them. The modules, and subroutines in

teem, specific to the Chromatics driver all begin with an

01- identifier, for example, O1L1B2 or O1MOVE. The Tektronix

4014 software Is device driver #2, taus its names are all

prefixed with an 02-. Also provided is a driver which shares

the Tektronix 4514 code but Is to be used vith the TeKtronix

4010. This uses the 03- prefix. Only the 03EEC (the

interface with the YGM softvare) routine nas tne prefix, tne

rest of the driver uses the Tektronix 4014 code. For the

routines to be written as part of this study, the 04- prefix

vas selected, being the next in the sequence.

The target device in this portion of the study was the

Ramtet RM-9400, a very poverful and sophisticated color

raster scan graphics device. Adaptation of a similar driver

seemed tne best course of action. The Chromatics graphics

terminal is also a color, raster device though not nearly as

advanced as the RM-9400. Nonetheless Its driver is readily

available and is already adapted to the PDP-11/RSI

67

environment. It provides a good startine point for

developing the Ramtet software.

The initial Intent in the construction of a device

driver for the RM-9409 vas to leave toe Chromatics driver

intact as far as possible. The module SKELI3, which contains

the device independent hardware feature simulation routines,

was left unchanged. The Stream Characteristics Table had to

be modified only slightly to include the new device. The Run

Time Information Table for the Ramtet is simply a copy of

the one provided for the Chromatics driver. The same is true

for 04LIB1 vita the exception of toe 04EXIC routine.

Modifications to 04111C were very slight. Inclusion of the

new 04EXIC routine did necessitate changes to toe VGM

software in the INISTR and SILSTR (SILect STRing) modules.

The bult of the wort In writing the nev driver will be

In developine a new 04LI3. Creation of a new Device

Characteristics Table is also important. The latter requires

an Item by item reviewing of toe table variables and

providint the appropriate values as they pertain to the RM-

9400. Details of what entries should be made are In the BNR

Skeleton Driver Installation Manual". In this study very

little of the RM-9408's capabilities were exercised and the

importance of the Device Characteristics Table was secondary

to getting a rudimentary system in operation. As the device

driver develops Into a more refined form and incorporates

more of the RM-9499's capabilities, the Device

68

F2

Characteristics Table should be revieved and updated

continuously.

B. RAMTNK RM-9409 INSTRUCTION FORMAT

Before vriting any of toe routines, a knowledge of the

format of an RM-9400 instruction is required. The RM-9400

instruction is a variable length buffer of 16 bit words. The

first 8 bits of the first word contain the code for the

function the device is to execute. For eta pie, an operation

code of 06H (Ramtek mnemonic INIT) Initializes the device; a

code of 35H (Write Vector, Unlinked - mnemonic VYT) is a

line drawing instruction. The operation code determines how

much more of the instruction buffer the RM-9400 needs. For a

very simple instruction like INIT, once the operation code

is read, the rest of the buffer is lnored. For something

like a line drawing, however, the device will require a

number of extra words of Information before it can execute

the instruction. The extra vords will, as a minimum, have

to indicate toe end points of the line, and may include the

foreground and backtround colors as well as the line style

and thickness. Depending on tne operation, some of the

additional instruction words are essential and some are

optional. In most cases, if a piece of data Is required and

is not specified, a default value will be used. The

architecture of te RAM-9400 Is such that it is possible for

the user to specify the default parameters values.

69

The presence of additional words of information is

indicated to tne Ramtei by flag bits. The last 8 bits of the

first word are the primary set of flags. Only three of these

are involved in extending the size of the instruction. The

five nigh order bits of tne low byte modify tne execution of

the operation code as indicated in the following table.

bits 6 & 7 code for the mode of addressing
refresh memory

bit 5 selects additive mode of
text output

bit 4 reverses forearound and
background colors

bit 3 sets device to process
bytes in a word in reverse order

It is the tnree lowest bits that Indicate how many

additional words of data will be In the Instruction. Bits 2

and 1 each indicate whether a particular "operand flat word"

will be In the instruction buffer.

If bit 1 in set, "operand flag word #1" (071) will

immediately follow the word containing the operation code

and the primary flats. 071 is another set of flaws each of

vhich corresponds to additional pieces of information in the

instruction. The settine of one of the 16 bits in OF1 means

that one or more words of data will follow. The order of the

additional data will correspond to the bits of 071, from

lowest to highest.

A sample bit pattern might be

600e 0e01 e0e 0s10 (002E)

75

This vould indicate that tvo additional pieces of data (one

for each "1" bit) are in the instruction buffer follovina

071. In this case the two bits that are set mean tnat

foreground" data and "line dimension" data are present

(bits 1 and 8 respectively). Tne foreground Information is

simply an integer Index to a color table in Ramtek refresh

memory and only requires a single word of storage. The line

dimensioning information is more complex consisting of a

pattern code and a repeat code (interpretation of tnese

codes is not important to the current discussion) and

requires tvo words. These tvo vords will follov tne

foreground vord in the buffer. The code that the RM-9400

vould execute is snorn symbolically In Figure 5.

bit 15 bit 0

op Coe- flags-

operand flag vord 1

foreground color index

I line code vord 1
II

line code vord 2
I

Figure 5. Instruction Buffer vith O1 and Associated

a Parameters

Bit 2 of the primary flags Indicates the presence or

absence of "operand flag vord 2" (012). If flag bit 2 Is set

71

then 072 viii immediately follow 071. If flag bit 2 Is set

and flag bit 1 is not, then thne vord immediately folloving

the operation code word is 072. 072 performs exactly the

same task as 071 except tnat only Its six least significant

bits are used.

Flag bit 0 in the operation code word indicates that

text or numeric data vlil follov OF1, 012 and their

associated parameters if present. The first word of this

data vill always be an Integer Indicating now many

additional k_ e of data will come after it.

To illustrate, suppose the user wants to draw a line

from the pixel at screen coordinates 100,100 to the one at

510,590. He further want Its color to be tnat of #4 In the

color table In refresh memory and his line dimension code is

given by the words 911H and 00930. The instruction buffer

would be that shown In figure 6.

To a rough approximation the operation codes for RM-9400

Instructions correspond to TGM primitive and device control

functions. Similarly, the parameters referenced by the

operand flag words correspond to attribute values. Valle

this is not always the case it provides a good rule of thumb

for the initial development of a device driver. Those VGM

calls executin& a primitive or control function will cause

an operation code to be placed In the Instruction buffer.

Those setting an attribute will cause the setting of flags

and loading of appropriate parameter values.

72

C. SUTMING &TTRIRBUTS

1. Storel 122uiusel

Vuen an attribute Is set It does not necessarily

have to take effect Immediately. Therefore memory locations

must be available to store the values of attribute settings

until an appropriate operation code using them is loaded

oode flags
Bel 691 00l vi

I liii 06621 I 0lS 3601

SI I

SI eI eeoeeelone coe vorid i--

oll@ see@ ll f010

Iline code word 2
I -- VWU53

see see 00 ~001el
I I

I Idata lenath ;Ord

I z start coordinate I
I 0000 sle@ il@ gil

y start coordinate I
I BOBO BOBO o11 0100

I- zend coordinate
oge 0001 1111 010i

y end coordinate6656e 0621 1111 6156
* I

figure 6. Instruction buffer for line with specified color
and style

73

into the Instruction buffer. Te RM-9400 nas the capacity

for setting 22 different parameters, each one corresponding

to a bit in one of the operand flag vords (16 In 071 and 6

In O12). Not all of the parameters that are entered into the

Ramtek Instruction are limited to a single word. Althouth

some parameters do require only one word there are others

that need 2 or 4, and in one case 12, words of storage. The

total storage required for the 22 parameter settings is 47

words. A global, integer array of 47 elements named PARAM Is

set up as part of a BLOCK DATA program to store these values

as they are set. Two additional "read only" arrays are also

part of that BLOCK DATA subroutine. These aid in referencing

the PARAM array. Integer array PRMPTR of length 22 contains

Indices to tne starting location In P1AM where a particular

parameter's values are saved. Each entry in PRMPTR

corresponds to a flag In one of the operand flag words.

Elements 1 through 16 of PRMPTR contain pointers to the lata

associated with bits 0 through 15 of 071. Elements 17

through 22 do the same for bits 0 through 5 of 072. The

second array, PRMSIZ, is a parallel array to PRMPTR. Each of

Its integer values is the size, In words, of the particular

parameter pointed to by the corresponding element in PRMPTR.

The values of PRMPTR and PRMSIZ are flied at compile time

and remain unchanged throughout the program. PARAM is

initially set to all zero entries and gets updated as the

various attribute values are assigned.

74

There are also tvo logical a- rays and taree logical

variables involved In keeping track of attribute settings.

The elements of the logical arrays correspond to the bits of

O1. and 072. They are named OFlARR and 072ARR. If a bit in

either 071 or 072 is to be set by a particular subroutine

call then the element in OFlARR or 02ARR tnat corresponds

will have a FORTRAN value of ,TRUE.. The lovical variables

correspond to the lowest three bits of the primary flag set

of the Ramtet instruction operation code word. For bit 2

there is 02L, for bit 1 taere is OF1L and for bit 0 tnere

Is DFL. All of the lorical variables, includine the arrays

are Initialized to .FALSZ..

Finally, the Vhree words which actually control the

Instruction buffer size must be tept: 071, 072, and DLV

(data leneth vord). These are declared as Intecer variables

in the BLOCK DATA subroutine and initialized to zero.

Wit T UIX6 L!zit2.nmi

Vhen a subroutine that sets an attribute Is called,

several operations must take place, not necessarily in any

particular order. One of the required events Is that the

attribute values must be entered Into the proper location In

PARAN. This Is done In a special subroutine called 04LOAD.

Its essential part Is a DO loop wnich fills tue array

starting at the location Indicated by an element of PRMPTR

and filling the number of words indicated by tie

corresponding PrISIZ value. Along with setting the parameter

75

values a fla& marine the fact that they are to be used

must also be set In either OFlAUR or 01"ARR. Also, the flag

indicatine either 071 or OF2, must be set, so either OFlFL

or 027L becomes .TRUR..

Te code for any subroutine that sets an attribute

can be vritten according to the follovinc almorithm:

Input : parameter values
begin attribute settlns subroutine

set OFlFL or 021
If flag In OFlARR or OF2ARR not set then

set OFARR or 02AR rla
set flag In 01 or 012 by adding proper pover of

twvo
end if
store parameter values In PARAM

end

Tvo subroutines have been vritten that carry out tnis

process. They are 04COLR and 04BCOL. The source code for

them is found under RS1 on the PDP-12/50 in directory

DP3:[301,iJ. Te subroutine 04LOAD Is also found In this

directory.

The critical subroutine in module 04LIB2 is COPCOD.

This Is the one that controls the filling of the

instruction. It is invoted by the primitive and control

subroutines In 04LID2. The routines that call COPCOD pass as

a parameter an index to an array containinz the Rairtet

operation codes. These operation codes are set into the

array OPCODS at compile time. They are designed to be the

Ramtet equivalent of the intended YGM function. COPCOD gets

76

the actual code from the array OPCODE. The operation code

and the primary flags are then combined into the first vord

of the instruction buffer. COPCOD also causes the operand

flagvords (OF1 and 072), their parameter values and the data

length word to be loaded if any of them are required. The

text or numeric data is loaded by the primitive or control

routine itself.

The following algorithm shows the operation of

COPCOD. The code can be found in directory DP3:[301,lJ:

input: OPCODS index
begin COPCOD

get actual operation code from array OPCODE
if OlIFL - true then set flag bit 1
if 0121L a true then set flax bit 2
shift operation code to upper byte of first

instruction vord (multiply by 256)
add flagvord to shifted operation code
load operation code word into buffer
load Of and/or 012 as indicated by flags
load parameters in proper order from PARAM
load data length word if necessary

end

As with attribute setting, all subroutines which are

primitive functions can be patterned after a single

algorithm. Control functions can follow tnis same pattern

though they typically will not require data values to be

placed in the Instruction buffer. The algorithm Is:

input data values
begin function execution

set DFFL (data flag.) if appropriate
set bit 0 of flats
set data length word (DLV) to number of bytes of data
call COPCOD - pass OPCODE index
load data values
execute instruction

end

77

A number of routines nave been written following

this algorithm. They include:

04DOT place a point at specified coordinates

04MOVE change current cursor position

04DRAV draw a line between two specified points

04SSTR output a text string

04RSIT erase tue screen.

All can be found in directory DP3:[3i,lj. It should be

noted that the routine 04STR, vich builds an instruction

for text output, inserts an extra step before loading the

data. OSTR receives Its text data in an Integer array with

one alphanumeric character per element. The Ramtekt requires

textual data output to be formatted to one character per

byte. Therefore 04STR must mare this conversion before

loading the data into the buffer.

'_ tns
As tae routines were developed they were tested for

operability. The testing was at a very low level simply

checking that the instruction buffer was beine properly

constructed and transmitted to the RM-9400. All of the

routines develiped In tnis portion of the study nave been

successfully checked in this manner. The test prograrms are

modularized, eaca being called by a master routine called

DUMTST. The individual test routines are named LINTST (LINe

drawing TeST), PTTST (PoinT placement TeST), TXTST (TeXt

78

output TeST) and COLTS? (COLor selection TeST). Their source

code can be found in directory DP3:[301,iJ.

All of the routines developed were originally part

of tne O1LI2 module of the Cnromatics driver. A copy of t;e

original software is available in lirectory DP3:[5,3]. After

modifying the names to conform with the selection of 04 as

the Identifier for the new device driver each subroutine was

removed from the module and treated as a separate entity.

This was done for ease of editing and troubleshooting. To

support this process command files were created to

facilitate repetitive c.ompilation and tasi building

operations. The files COMP.CMD and TCOMP.CMD in directory

DP3:[301,i1 cause the compilation of all the driver software

and all the test software, respectively. File DUM.CMD builds

the test tast DUMTST.TSK, by linting the modified

subroutines, the BLOCI DATA programs and the test routines.

Among tne test routines some snort pieces of code

tave been included to accomodate testing. The important ones

are RMINIT, which inserts the color table into the Ramter

refresh memory, and BIGTIT, which causes text output to be

printed in a larrer than normal format for vlewing ease.

79

APPENDIX C. PROGRfING ITh !_GM

Graphics programming using YGM is actually a hi hly

specialized use of FORTRAN. Because of this, all the rules

of PDP-11 FORTRAN apply as well as those of the graphics

system. When using VGM the programmer renerates a main

program vth.ch references a library of graphics subroutines.

A. SETUP

VGM is initialized by three essential statements. First

CALL INIT
(INITialize)

starts the VGM session. It sets the variables required by

both tne operating system and VGM itself. The routine

ensures that each time TOM is invoted it is in the same

starting state. Immediately folloving this,

CALL INISTR(n)
(INItialize STReam)

activates the device dependent driver software for stream

"n'. It sets. evice parameters and uses the operatine system

process handling capabilities to allow application program

access to toe particular device or devices on the stream.

Lastly,

CALL SZLSTR (n1)
(SeLect STReam)

directs all graphics output to stream 'nl'. If another CALL

SNLSTR (n2) instruction is encountered before a CALL

8s

DELSTR(nl) instruction, tne grapnics output will go to both

streams n1 and n2. It is mandatory that each stream be

prepared by a CALL INISTR(n) before it is selected by a CALL

SNLSTR (n).

B. ENVIRONMENT SPECIFICATION

1. The Coordinate System

In VGM, the user defines his graphical world in

arbitrarily selected "world coordinates". These coordinates

are tne medium through vnicn he communicates positional data

to the system. VGM processes those world coordinates through

a series of viewing transformations and eventually derives

"normalized device coordinates" (NDC). The NDC's are real

values ranging from 0.0 to 1.0 and are mapped onto the

physical device selected for viewing. A picture in NDC Is

Independent of any particular graphics device.

For VGM to properly execute the string of required

coordinate transformations, tne Normalized Device Coordinate

System must be specified before World Coordinates. Vith

CALL NDCSPC (nstrm, vidth, height)
(Normalized Device Coordinate SPeCification)

a rectangular portion of the view surfaces of terminals on

stream "nstrm' is defined. 'Width and 'height' are real

numbers ranging from 0.0 to 1.0. They Indicate the relative

part of that dimension of the view surface that is to be

used. One or the otner must be 1.0. Therefore, el-ler tne

full screen width or the full screen height will be used.

91

The remaining dimension will be proportionately adjusted. A

statement such as

CALL NDCSPC (1,1.0,.75)

will set up the devices on stream #1 so that a viewing area

usinc the full width of the screen is made available. The

teiglta will be 3/4 as large as the width if that much is

available. If a dimension specification is too larre, the

maximum available is used. The NDCSPC command normally is

used only once *or each stream.

2. The View Surface

After setting the total viewing area available,

viewporzs" are assianed to the streams by

CALL TIEV (nstrm, xmin, ymin, xmax, ymax)

A viewport is a portion of the available surface (NDC space)

that viii be used, up to, but not exceeding, tne total

declared surface. 'Imn', 'ymin', 'xmax', and 'ymax' are NDC

values and must be within tne bounds specified in the NDCSPC

call. A viewport declaration stays in effect until a new one

is declared. The viewport may be cnanged as often as tne

user desires in the main program.

The 'window' is the counterpart of the viewport In

the world coordinate system and is set by

CALL wVNDOV (nstrm, xmin, ymin, xmaz, ymax)

The parameter values except for 'nstrm' are in World

Coordinates and are arbitrarily selected by the user to meet

his requirements for clippina and imate transformations.

82

This Is the part of World Coordinates that the picture is

created in. The window Is the wore area of the programmer.

For display, the clipped and transformed images in the

window are mapped to the NDC space defined by the vievport.

3. Bactground Color

On color capable levices the last environment

setting operation is to define tne background with

CALL BCICOL(Ival)
(BaCleround COLor)

to set the attribute and

CALL ERASE

to brine it up on the screen.

Tne current version of VGM allows selection of one

of only eight colors available. Selection is done by

specifyine an intexer value between 0 and 7 for 'ival'. The

default color table contains black, blue, green, cyan, red,

magenta, yellow, and whtite, in tnat order.

C. CREATING A PICTURE

Vith the devices initialized, and the environment set,

the next step is to open a segment. To do this the type of

the intended sewment must first be declared by

CALL SZGTYP (itype)
(SEGment TTPe).

An 'itype' value of 1 Indicates tnat all subsequently

created segments will be non-retained. A value of 2 means

tnat tney will be retained.

83

After the type nas been establisned, the segment Is

opened with

CALL CRESIG (nseemt)
(CREate SEGment).

'Nsegmt' is an integer value that uniquely identifies the

particular segment. Once the segment is open, tne user

creates his image by invoking primitives and assienine

attributes. Any primitive attribute values declared before

closing the segment are static. Declaration of seement

attributes is not allowed vnile a segment is open. is eacn

primitive is executed its contribution to the total image

will be displayed. When the particular Image Is completed,

the

CALL CLOSEG
(CLOse SEGment)

instruction Is Issued. It is not necessary to specifically

Identify the segment being closed, since only one Is allowed

to be open at any given time.

After closing a segment, a number of options are open to

the user. He may terminate tte session by normal FORTRAN

procedures or ne may continue on and manipulate devices,

streams and segmnents. He may alter dynamic attributes and

create additional segments subject to the limitations of YGM

and FORTRAN.

D. EXECUTING THE PROGRAM

After creating the source code for a VGM program it

should be independently compiled into an object file.

'4

4

Incorporatine the user file and the YGM library into an

executable task requires the following command sequence to

be issued to the RSI Task Builder (for purposes of the

example, MAIN is selected to be the name of the user's

program):

TKB> MAIN/CP/FP, VGM/-SPuVGMLr/MP

ASG - ST: 1

ASG a ST: 2

ASG - ST: 4

ASG - TI: 5

ACTFIL - 3

MAXBUF - 8e

FMTBUF - 80

-q //

Before executine the task (now stored In file MAIN.TS[) it

is necessary to INSTALL the device drivers. For each stream

that will be used by MAIN.TS[. The MCR command to RSI is

>INS OnDRIV

where 'n' Is the interer identifier for the particular

driver. The command

>RUN MAIN

will execute the user's graphics program.

85

MIchener, 3.C., and Foley, J.D., "Some Major Issues in tne
Design of the CORE Graphics System, M_ 1uJjg 1_!yj, 10,
4, pp. 389 - 443, (Dec 1978).

S icnener, J.C.& and TanDam, A., "A Functional Overviev of
the CORE System , CAy_ . , 10, 4, pp. 381 - 387,
(Dec 1978).

Nevnan, V., and VanDam, A., "Recent Efforts Tovard Graphics
Standardization", jmp31jU 5.AeZI, 10, 4, pp. 365 - 380,
(Dec 1978).

Nevman, V.M., and Sproull, R.F., Prjjgj 9. 1,J.SAL.r&i
a. tR.Z ti= .I1, McGrav-Hill, Nev Tort, Nev Tort, 1979.

a Status Report of tae Grapnics Standards Planning Committee
of ACM/SIGGRAPH , Cgmjgpr qLjJ&1, 11, 3 (Fall 1977).

f"Status Report of tne GSPC", SIMguer ja__12c,1, 13, 3
(Auwust 1979).

Bell Northern Research, _.rl~a Gria1S1 _IfIal - _ er

Ilojjj ll u i r, Ottawa. Canada, April 1981.

Digital Equipment Corporation, EPL- -IFO-RT! laaue
I.rtea, dUMAJ, Maynard, Mass., 1975.

Ramtek Corporation, R -g94._ SJFj ual I.LS1 _Di ZIiz .Zi_.t e.L
g.o 1wia RefgeZ_ 2 djUee n , Santa Clara, Ca. 1979.

86

~1

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 6142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Professor Geore A. Rabe, Code 52Ra 1
Department of Computer Science
Naval Posgraduate School
Monterey, California 93940

5. Lt. PatrIct M. Comi, USM 1
3938 Via de la Bandola
San Tsidro, California 92072

8?

FIME

DTI

